LeChateliers's Principle: Summary

A change in any of the factors that determine the equilibrium conditions of a system will cause the system to change in such a manner as to reduce or counteract the effect of the change.

Factor that Changes	Direction of the Change	Direction to Restore
		Equilibrium
1. Concentration	↑ Reactant	Forward
	↑ Product	Reverse
2. Temperature	\uparrow T, when $\Delta H > 0$	Forward – K increases
	\uparrow T, when $\Delta H < 0$	Reverse – K decreases
3. Volume	\uparrow V, when $\Delta n_{gas} > 0$	Forward
	\uparrow V, when $\Delta n_{gas} = 0$	No effect
A change in volume	\uparrow V, when $\Delta n_{gas} < 0$	Reverse
impacts gas pressure.		
An increase in volume		
reduces pressure.		

If you reverse any of the Changes above, the **Direction to reach Equilibrium** reverses